3*x^2+15*(x+4)=14*x*(x+4)

Simple and best practice solution for 3*x^2+15*(x+4)=14*x*(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3*x^2+15*(x+4)=14*x*(x+4) equation:



3x^2+15(x+4)=14x(x+4)
We move all terms to the left:
3x^2+15(x+4)-(14x(x+4))=0
We multiply parentheses
3x^2+15x-(14x(x+4))+60=0
We calculate terms in parentheses: -(14x(x+4)), so:
14x(x+4)
We multiply parentheses
14x^2+56x
Back to the equation:
-(14x^2+56x)
We get rid of parentheses
3x^2-14x^2+15x-56x+60=0
We add all the numbers together, and all the variables
-11x^2-41x+60=0
a = -11; b = -41; c = +60;
Δ = b2-4ac
Δ = -412-4·(-11)·60
Δ = 4321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{4321}}{2*-11}=\frac{41-\sqrt{4321}}{-22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{4321}}{2*-11}=\frac{41+\sqrt{4321}}{-22} $

See similar equations:

| 3x/4+4=24 | | 2/3x=49 | | (4x+7)(2x-3)=6x² | | 7x-13=10x+21 | | 4((3x-2)=52 | | 22x=1804 | | 92x=4508 | | 60x=4860 | | 98x=6860 | | 85x=6290 | | 23x=1817 | | 3=-45w^2-24w | | 84x=3864 | | 2n2+4n-14=272 | | 9+3x12= | | n2+n+4=136 | | 7x-1916= | | 2x³-5x²-7x=0 | | X+7/3+x-1/6=8x/3 | | 8x³+10x²-7x=0 | | 2*x-6+28=24 | | 25=10r-15 | | 8x+16=4x+8 | | −2x+2=−4 | | 5x=2(x+3)+6 | | 360x+3200=0 | | 2x−1=11−4x | | 45x/180=0 | | (40+6x)(80-3x)=0 | | 8-5x=3x-168−5x=3x−16 | | 2(50)-w+2w=100 | | 3(5+p)=21 |

Equations solver categories